Description: The span of a Hilbert space singleton is a subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | spansnsh | |- ( A e. ~H -> ( span ` { A } ) e. SH ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spansnch | |- ( A e. ~H -> ( span ` { A } ) e. CH ) |
|
2 | chsh | |- ( ( span ` { A } ) e. CH -> ( span ` { A } ) e. SH ) |
|
3 | 1 2 | syl | |- ( A e. ~H -> ( span ` { A } ) e. SH ) |