Description: The span of a Hilbert space singleton is a subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnsh | |- ( A e. ~H -> ( span ` { A } ) e. SH ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spansnch |  |-  ( A e. ~H -> ( span ` { A } ) e. CH ) | 
						|
| 2 | chsh |  |-  ( ( span ` { A } ) e. CH -> ( span ` { A } ) e. SH ) | 
						|
| 3 | 1 2 | syl |  |-  ( A e. ~H -> ( span ` { A } ) e. SH ) |