Step |
Hyp |
Ref |
Expression |
1 |
|
spansnss |
|- ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A ) |
2 |
1
|
ex |
|- ( A e. SH -> ( B e. A -> ( span ` { B } ) C_ A ) ) |
3 |
2
|
adantr |
|- ( ( A e. SH /\ B e. ~H ) -> ( B e. A -> ( span ` { B } ) C_ A ) ) |
4 |
|
spansnid |
|- ( B e. ~H -> B e. ( span ` { B } ) ) |
5 |
|
ssel |
|- ( ( span ` { B } ) C_ A -> ( B e. ( span ` { B } ) -> B e. A ) ) |
6 |
4 5
|
syl5com |
|- ( B e. ~H -> ( ( span ` { B } ) C_ A -> B e. A ) ) |
7 |
6
|
adantl |
|- ( ( A e. SH /\ B e. ~H ) -> ( ( span ` { B } ) C_ A -> B e. A ) ) |
8 |
3 7
|
impbid |
|- ( ( A e. SH /\ B e. ~H ) -> ( B e. A <-> ( span ` { B } ) C_ A ) ) |