| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ocss | 
							 |-  ( A C_ ~H -> ( _|_ ` A ) C_ ~H )  | 
						
						
							| 2 | 
							
								
							 | 
							ocss | 
							 |-  ( ( _|_ ` A ) C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ ~H )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ ~H )  | 
						
						
							| 4 | 
							
								
							 | 
							ococss | 
							 |-  ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							spanss | 
							 |-  ( ( ( _|_ ` ( _|_ ` A ) ) C_ ~H /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) -> ( span ` A ) C_ ( span ` ( _|_ ` ( _|_ ` A ) ) ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2anc | 
							 |-  ( A C_ ~H -> ( span ` A ) C_ ( span ` ( _|_ ` ( _|_ ` A ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ocsh | 
							 |-  ( ( _|_ ` A ) C_ ~H -> ( _|_ ` ( _|_ ` A ) ) e. SH )  | 
						
						
							| 8 | 
							
								
							 | 
							spanid | 
							 |-  ( ( _|_ ` ( _|_ ` A ) ) e. SH -> ( span ` ( _|_ ` ( _|_ ` A ) ) ) = ( _|_ ` ( _|_ ` A ) ) )  | 
						
						
							| 9 | 
							
								1 7 8
							 | 
							3syl | 
							 |-  ( A C_ ~H -> ( span ` ( _|_ ` ( _|_ ` A ) ) ) = ( _|_ ` ( _|_ ` A ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							sseqtrd | 
							 |-  ( A C_ ~H -> ( span ` A ) C_ ( _|_ ` ( _|_ ` A ) ) )  |