Step |
Hyp |
Ref |
Expression |
1 |
|
uneq1 |
|- ( A = if ( A C_ ~H , A , ~H ) -> ( A u. B ) = ( if ( A C_ ~H , A , ~H ) u. B ) ) |
2 |
1
|
fveq2d |
|- ( A = if ( A C_ ~H , A , ~H ) -> ( span ` ( A u. B ) ) = ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) ) |
3 |
|
fveq2 |
|- ( A = if ( A C_ ~H , A , ~H ) -> ( span ` A ) = ( span ` if ( A C_ ~H , A , ~H ) ) ) |
4 |
3
|
oveq1d |
|- ( A = if ( A C_ ~H , A , ~H ) -> ( ( span ` A ) +H ( span ` B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) ) |
5 |
2 4
|
eqeq12d |
|- ( A = if ( A C_ ~H , A , ~H ) -> ( ( span ` ( A u. B ) ) = ( ( span ` A ) +H ( span ` B ) ) <-> ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) ) ) |
6 |
|
uneq2 |
|- ( B = if ( B C_ ~H , B , ~H ) -> ( if ( A C_ ~H , A , ~H ) u. B ) = ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) |
7 |
6
|
fveq2d |
|- ( B = if ( B C_ ~H , B , ~H ) -> ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) = ( span ` ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) ) |
8 |
|
fveq2 |
|- ( B = if ( B C_ ~H , B , ~H ) -> ( span ` B ) = ( span ` if ( B C_ ~H , B , ~H ) ) ) |
9 |
8
|
oveq2d |
|- ( B = if ( B C_ ~H , B , ~H ) -> ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` if ( B C_ ~H , B , ~H ) ) ) ) |
10 |
7 9
|
eqeq12d |
|- ( B = if ( B C_ ~H , B , ~H ) -> ( ( span ` ( if ( A C_ ~H , A , ~H ) u. B ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` B ) ) <-> ( span ` ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` if ( B C_ ~H , B , ~H ) ) ) ) ) |
11 |
|
sseq1 |
|- ( A = if ( A C_ ~H , A , ~H ) -> ( A C_ ~H <-> if ( A C_ ~H , A , ~H ) C_ ~H ) ) |
12 |
|
sseq1 |
|- ( ~H = if ( A C_ ~H , A , ~H ) -> ( ~H C_ ~H <-> if ( A C_ ~H , A , ~H ) C_ ~H ) ) |
13 |
|
ssid |
|- ~H C_ ~H |
14 |
11 12 13
|
elimhyp |
|- if ( A C_ ~H , A , ~H ) C_ ~H |
15 |
|
sseq1 |
|- ( B = if ( B C_ ~H , B , ~H ) -> ( B C_ ~H <-> if ( B C_ ~H , B , ~H ) C_ ~H ) ) |
16 |
|
sseq1 |
|- ( ~H = if ( B C_ ~H , B , ~H ) -> ( ~H C_ ~H <-> if ( B C_ ~H , B , ~H ) C_ ~H ) ) |
17 |
15 16 13
|
elimhyp |
|- if ( B C_ ~H , B , ~H ) C_ ~H |
18 |
14 17
|
spanuni |
|- ( span ` ( if ( A C_ ~H , A , ~H ) u. if ( B C_ ~H , B , ~H ) ) ) = ( ( span ` if ( A C_ ~H , A , ~H ) ) +H ( span ` if ( B C_ ~H , B , ~H ) ) ) |
19 |
5 10 18
|
dedth2h |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( span ` ( A u. B ) ) = ( ( span ` A ) +H ( span ` B ) ) ) |