| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-span |  |-  span = ( y e. ~P ~H |-> |^| { x e. SH | y C_ x } ) | 
						
							| 2 |  | sseq1 |  |-  ( y = A -> ( y C_ x <-> A C_ x ) ) | 
						
							| 3 | 2 | rabbidv |  |-  ( y = A -> { x e. SH | y C_ x } = { x e. SH | A C_ x } ) | 
						
							| 4 | 3 | inteqd |  |-  ( y = A -> |^| { x e. SH | y C_ x } = |^| { x e. SH | A C_ x } ) | 
						
							| 5 |  | ax-hilex |  |-  ~H e. _V | 
						
							| 6 | 5 | elpw2 |  |-  ( A e. ~P ~H <-> A C_ ~H ) | 
						
							| 7 | 6 | biimpri |  |-  ( A C_ ~H -> A e. ~P ~H ) | 
						
							| 8 |  | helsh |  |-  ~H e. SH | 
						
							| 9 |  | sseq2 |  |-  ( x = ~H -> ( A C_ x <-> A C_ ~H ) ) | 
						
							| 10 | 9 | rspcev |  |-  ( ( ~H e. SH /\ A C_ ~H ) -> E. x e. SH A C_ x ) | 
						
							| 11 | 8 10 | mpan |  |-  ( A C_ ~H -> E. x e. SH A C_ x ) | 
						
							| 12 |  | intexrab |  |-  ( E. x e. SH A C_ x <-> |^| { x e. SH | A C_ x } e. _V ) | 
						
							| 13 | 11 12 | sylib |  |-  ( A C_ ~H -> |^| { x e. SH | A C_ x } e. _V ) | 
						
							| 14 | 1 4 7 13 | fvmptd3 |  |-  ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |