| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spc2ed.x |
|- F/ x ch |
| 2 |
|
spc2ed.y |
|- F/ y ch |
| 3 |
|
spc2ed.1 |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> ( ps <-> ch ) ) |
| 4 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
| 5 |
|
elisset |
|- ( B e. W -> E. y y = B ) |
| 6 |
4 5
|
anim12i |
|- ( ( A e. V /\ B e. W ) -> ( E. x x = A /\ E. y y = B ) ) |
| 7 |
|
exdistrv |
|- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
| 8 |
6 7
|
sylibr |
|- ( ( A e. V /\ B e. W ) -> E. x E. y ( x = A /\ y = B ) ) |
| 9 |
|
nfv |
|- F/ x ph |
| 10 |
9 1
|
nfan |
|- F/ x ( ph /\ ch ) |
| 11 |
|
nfv |
|- F/ y ph |
| 12 |
11 2
|
nfan |
|- F/ y ( ph /\ ch ) |
| 13 |
|
anass |
|- ( ( ( ch /\ ph ) /\ ( x = A /\ y = B ) ) <-> ( ch /\ ( ph /\ ( x = A /\ y = B ) ) ) ) |
| 14 |
|
ancom |
|- ( ( ch /\ ph ) <-> ( ph /\ ch ) ) |
| 15 |
14
|
anbi1i |
|- ( ( ( ch /\ ph ) /\ ( x = A /\ y = B ) ) <-> ( ( ph /\ ch ) /\ ( x = A /\ y = B ) ) ) |
| 16 |
13 15
|
bitr3i |
|- ( ( ch /\ ( ph /\ ( x = A /\ y = B ) ) ) <-> ( ( ph /\ ch ) /\ ( x = A /\ y = B ) ) ) |
| 17 |
3
|
biimparc |
|- ( ( ch /\ ( ph /\ ( x = A /\ y = B ) ) ) -> ps ) |
| 18 |
16 17
|
sylbir |
|- ( ( ( ph /\ ch ) /\ ( x = A /\ y = B ) ) -> ps ) |
| 19 |
18
|
ex |
|- ( ( ph /\ ch ) -> ( ( x = A /\ y = B ) -> ps ) ) |
| 20 |
12 19
|
eximd |
|- ( ( ph /\ ch ) -> ( E. y ( x = A /\ y = B ) -> E. y ps ) ) |
| 21 |
10 20
|
eximd |
|- ( ( ph /\ ch ) -> ( E. x E. y ( x = A /\ y = B ) -> E. x E. y ps ) ) |
| 22 |
21
|
impancom |
|- ( ( ph /\ E. x E. y ( x = A /\ y = B ) ) -> ( ch -> E. x E. y ps ) ) |
| 23 |
8 22
|
sylan2 |
|- ( ( ph /\ ( A e. V /\ B e. W ) ) -> ( ch -> E. x E. y ps ) ) |