Step |
Hyp |
Ref |
Expression |
1 |
|
spc2egv.1 |
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
2 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
3 |
|
elisset |
|- ( B e. W -> E. y y = B ) |
4 |
2 3
|
anim12i |
|- ( ( A e. V /\ B e. W ) -> ( E. x x = A /\ E. y y = B ) ) |
5 |
|
exdistrv |
|- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
6 |
4 5
|
sylibr |
|- ( ( A e. V /\ B e. W ) -> E. x E. y ( x = A /\ y = B ) ) |
7 |
1
|
biimprcd |
|- ( ps -> ( ( x = A /\ y = B ) -> ph ) ) |
8 |
7
|
2eximdv |
|- ( ps -> ( E. x E. y ( x = A /\ y = B ) -> E. x E. y ph ) ) |
9 |
6 8
|
syl5com |
|- ( ( A e. V /\ B e. W ) -> ( ps -> E. x E. y ph ) ) |