Metamath Proof Explorer


Theorem spc2ev

Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypotheses spc2ev.1
|- A e. _V
spc2ev.2
|- B e. _V
spc2ev.3
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
Assertion spc2ev
|- ( ps -> E. x E. y ph )

Proof

Step Hyp Ref Expression
1 spc2ev.1
 |-  A e. _V
2 spc2ev.2
 |-  B e. _V
3 spc2ev.3
 |-  ( ( x = A /\ y = B ) -> ( ph <-> ps ) )
4 3 spc2egv
 |-  ( ( A e. _V /\ B e. _V ) -> ( ps -> E. x E. y ph ) )
5 1 2 4 mp2an
 |-  ( ps -> E. x E. y ph )