Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | spc2egv.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
Assertion | spc2gv | |- ( ( A e. V /\ B e. W ) -> ( A. x A. y ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2egv.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
2 | 1 | notbid | |- ( ( x = A /\ y = B ) -> ( -. ph <-> -. ps ) ) |
3 | 2 | spc2egv | |- ( ( A e. V /\ B e. W ) -> ( -. ps -> E. x E. y -. ph ) ) |
4 | 2nalexn | |- ( -. A. x A. y ph <-> E. x E. y -. ph ) |
|
5 | 3 4 | syl6ibr | |- ( ( A e. V /\ B e. W ) -> ( -. ps -> -. A. x A. y ph ) ) |
6 | 5 | con4d | |- ( ( A e. V /\ B e. W ) -> ( A. x A. y ph -> ps ) ) |