Step |
Hyp |
Ref |
Expression |
1 |
|
spc3egv.1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
2 |
|
elex |
|- ( A e. V -> A e. _V ) |
3 |
|
elex |
|- ( B e. W -> B e. _V ) |
4 |
|
elex |
|- ( C e. X -> C e. _V ) |
5 |
|
simp1 |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> A e. _V ) |
6 |
1
|
3coml |
|- ( ( y = B /\ z = C /\ x = A ) -> ( ph <-> ps ) ) |
7 |
6
|
3expa |
|- ( ( ( y = B /\ z = C ) /\ x = A ) -> ( ph <-> ps ) ) |
8 |
7
|
pm5.74da |
|- ( ( y = B /\ z = C ) -> ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
9 |
8
|
spc2egv |
|- ( ( B e. _V /\ C e. _V ) -> ( ( x = A -> ps ) -> E. y E. z ( x = A -> ph ) ) ) |
10 |
|
19.37v |
|- ( E. z ( x = A -> ph ) <-> ( x = A -> E. z ph ) ) |
11 |
10
|
exbii |
|- ( E. y E. z ( x = A -> ph ) <-> E. y ( x = A -> E. z ph ) ) |
12 |
|
19.37v |
|- ( E. y ( x = A -> E. z ph ) <-> ( x = A -> E. y E. z ph ) ) |
13 |
11 12
|
bitri |
|- ( E. y E. z ( x = A -> ph ) <-> ( x = A -> E. y E. z ph ) ) |
14 |
9 13
|
syl6ib |
|- ( ( B e. _V /\ C e. _V ) -> ( ( x = A -> ps ) -> ( x = A -> E. y E. z ph ) ) ) |
15 |
14
|
pm2.86d |
|- ( ( B e. _V /\ C e. _V ) -> ( x = A -> ( ps -> E. y E. z ph ) ) ) |
16 |
15
|
3adant1 |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( x = A -> ( ps -> E. y E. z ph ) ) ) |
17 |
16
|
imp |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ x = A ) -> ( ps -> E. y E. z ph ) ) |
18 |
5 17
|
spcimedv |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( ps -> E. x E. y E. z ph ) ) |
19 |
2 3 4 18
|
syl3an |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ps -> E. x E. y E. z ph ) ) |