Description: Rule of specialization, using implicit substitution. Analogous to rspcdv . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spcimdv.1 | |- ( ph -> A e. B ) |
|
spcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
Assertion | spcdv | |- ( ph -> ( A. x ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.1 | |- ( ph -> A e. B ) |
|
2 | spcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
3 | 2 | biimpd | |- ( ( ph /\ x = A ) -> ( ps -> ch ) ) |
4 | 1 3 | spcimdv | |- ( ph -> ( A. x ps -> ch ) ) |