Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by NM, 2-Feb-1997) (Revised by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcgf.1 | |- F/_ x A |
|
| spcgf.2 | |- F/ x ps |
||
| spcgf.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | spcgf | |- ( A e. V -> ( A. x ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcgf.1 | |- F/_ x A |
|
| 2 | spcgf.2 | |- F/ x ps |
|
| 3 | spcgf.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | 2 1 | spcgft | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
| 5 | 4 3 | mpg | |- ( A e. V -> ( A. x ph -> ps ) ) |