Metamath Proof Explorer


Theorem spcgf

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by NM, 2-Feb-1997) (Revised by Andrew Salmon, 12-Aug-2011)

Ref Expression
Hypotheses spcgf.1
|- F/_ x A
spcgf.2
|- F/ x ps
spcgf.3
|- ( x = A -> ( ph <-> ps ) )
Assertion spcgf
|- ( A e. V -> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 spcgf.1
 |-  F/_ x A
2 spcgf.2
 |-  F/ x ps
3 spcgf.3
 |-  ( x = A -> ( ph <-> ps ) )
4 2 1 spcgft
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. V -> ( A. x ph -> ps ) ) )
5 4 3 mpg
 |-  ( A e. V -> ( A. x ph -> ps ) )