Metamath Proof Explorer


Theorem spcgft

Description: A closed version of spcgf . (Contributed by Andrew Salmon, 6-Jun-2011) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgft.1
|- F/ x ps
spcimgft.2
|- F/_ x A
Assertion spcgft
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 spcimgft.1
 |-  F/ x ps
2 spcimgft.2
 |-  F/_ x A
3 biimp
 |-  ( ( ph <-> ps ) -> ( ph -> ps ) )
4 3 imim2i
 |-  ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) )
5 4 alimi
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ph -> ps ) ) )
6 1 2 spcimgft
 |-  ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) )
7 5 6 syl
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) )