Description: A closed version of spcgf . (Contributed by Andrew Salmon, 6-Jun-2011) (Revised by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spcimgft.1 | |- F/ x ps |
|
spcimgft.2 | |- F/_ x A |
||
Assertion | spcgft | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimgft.1 | |- F/ x ps |
|
2 | spcimgft.2 | |- F/_ x A |
|
3 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
4 | 3 | imim2i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) ) |
5 | 4 | alimi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ph -> ps ) ) ) |
6 | 1 2 | spcimgft | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) ) |
7 | 5 6 | syl | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) ) |