Metamath Proof Explorer


Theorem spcimdv

Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses spcimdv.1
|- ( ph -> A e. B )
spcimdv.2
|- ( ( ph /\ x = A ) -> ( ps -> ch ) )
Assertion spcimdv
|- ( ph -> ( A. x ps -> ch ) )

Proof

Step Hyp Ref Expression
1 spcimdv.1
 |-  ( ph -> A e. B )
2 spcimdv.2
 |-  ( ( ph /\ x = A ) -> ( ps -> ch ) )
3 elisset
 |-  ( A e. B -> E. x x = A )
4 1 3 syl
 |-  ( ph -> E. x x = A )
5 2 ex
 |-  ( ph -> ( x = A -> ( ps -> ch ) ) )
6 5 eximdv
 |-  ( ph -> ( E. x x = A -> E. x ( ps -> ch ) ) )
7 4 6 mpd
 |-  ( ph -> E. x ( ps -> ch ) )
8 19.36v
 |-  ( E. x ( ps -> ch ) <-> ( A. x ps -> ch ) )
9 7 8 sylib
 |-  ( ph -> ( A. x ps -> ch ) )