Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spcimgf.1 | |- F/_ x A |
|
spcimgf.2 | |- F/ x ps |
||
spcimgf.3 | |- ( x = A -> ( ph -> ps ) ) |
||
Assertion | spcimgf | |- ( A e. V -> ( A. x ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimgf.1 | |- F/_ x A |
|
2 | spcimgf.2 | |- F/ x ps |
|
3 | spcimgf.3 | |- ( x = A -> ( ph -> ps ) ) |
|
4 | 2 1 | spcimgft | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
5 | 4 3 | mpg | |- ( A e. V -> ( A. x ph -> ps ) ) |