Step |
Hyp |
Ref |
Expression |
1 |
|
spcimgft.1 |
|- F/ x ps |
2 |
|
spcimgft.2 |
|- F/_ x A |
3 |
|
elex |
|- ( A e. B -> A e. _V ) |
4 |
2
|
issetf |
|- ( A e. _V <-> E. x x = A ) |
5 |
|
exim |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( E. x x = A -> E. x ( ph -> ps ) ) ) |
6 |
4 5
|
syl5bi |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> E. x ( ph -> ps ) ) ) |
7 |
1
|
19.36 |
|- ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) ) |
8 |
6 7
|
syl6ib |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> ( A. x ph -> ps ) ) ) |
9 |
3 8
|
syl5 |
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) ) |