Metamath Proof Explorer


Theorem spcimgft

Description: A closed version of spcimgf . (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgft.1
|- F/ x ps
spcimgft.2
|- F/_ x A
Assertion spcimgft
|- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 spcimgft.1
 |-  F/ x ps
2 spcimgft.2
 |-  F/_ x A
3 elex
 |-  ( A e. B -> A e. _V )
4 2 issetf
 |-  ( A e. _V <-> E. x x = A )
5 exim
 |-  ( A. x ( x = A -> ( ph -> ps ) ) -> ( E. x x = A -> E. x ( ph -> ps ) ) )
6 4 5 syl5bi
 |-  ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> E. x ( ph -> ps ) ) )
7 1 19.36
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> ps ) )
8 6 7 syl6ib
 |-  ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. _V -> ( A. x ph -> ps ) ) )
9 3 8 syl5
 |-  ( A. x ( x = A -> ( ph -> ps ) ) -> ( A e. B -> ( A. x ph -> ps ) ) )