Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | speccl | |- ( T : ~H --> ~H -> ( Lambda ` T ) C_ CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | specval | |- ( T : ~H --> ~H -> ( Lambda ` T ) = { x e. CC | -. ( T -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H } ) |
|
2 | ssrab2 | |- { x e. CC | -. ( T -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H } C_ CC |
|
3 | 1 2 | eqsstrdi | |- ( T : ~H --> ~H -> ( Lambda ` T ) C_ CC ) |