Description: Existence form of spsbc . (Contributed by Mario Carneiro, 18-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | spesbc | |- ( [. A / x ]. ph -> E. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
2 | rspesbca | |- ( ( A e. _V /\ [. A / x ]. ph ) -> E. x e. _V ph ) |
|
3 | 1 2 | mpancom | |- ( [. A / x ]. ph -> E. x e. _V ph ) |
4 | rexv | |- ( E. x e. _V ph <-> E. x ph ) |
|
5 | 3 4 | sylib | |- ( [. A / x ]. ph -> E. x ph ) |