Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. Lemma 9 of KalishMontague p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spfw.1 | |- ( -. ps -> A. x -. ps ) |
|
spfw.2 | |- ( A. x ph -> A. y A. x ph ) |
||
spfw.3 | |- ( -. ph -> A. y -. ph ) |
||
spfw.4 | |- ( x = y -> ( ph <-> ps ) ) |
||
Assertion | spfw | |- ( A. x ph -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spfw.1 | |- ( -. ps -> A. x -. ps ) |
|
2 | spfw.2 | |- ( A. x ph -> A. y A. x ph ) |
|
3 | spfw.3 | |- ( -. ph -> A. y -. ph ) |
|
4 | spfw.4 | |- ( x = y -> ( ph <-> ps ) ) |
|
5 | 4 | biimpd | |- ( x = y -> ( ph -> ps ) ) |
6 | 2 1 5 | cbvaliw | |- ( A. x ph -> A. y ps ) |
7 | 4 | biimprd | |- ( x = y -> ( ps -> ph ) ) |
8 | 7 | equcoms | |- ( y = x -> ( ps -> ph ) ) |
9 | 3 8 | spimw | |- ( A. y ps -> ph ) |
10 | 6 9 | syl | |- ( A. x ph -> ph ) |