Metamath Proof Explorer


Theorem spfw

Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. Lemma 9 of KalishMontague p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)

Ref Expression
Hypotheses spfw.1
|- ( -. ps -> A. x -. ps )
spfw.2
|- ( A. x ph -> A. y A. x ph )
spfw.3
|- ( -. ph -> A. y -. ph )
spfw.4
|- ( x = y -> ( ph <-> ps ) )
Assertion spfw
|- ( A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 spfw.1
 |-  ( -. ps -> A. x -. ps )
2 spfw.2
 |-  ( A. x ph -> A. y A. x ph )
3 spfw.3
 |-  ( -. ph -> A. y -. ph )
4 spfw.4
 |-  ( x = y -> ( ph <-> ps ) )
5 4 biimpd
 |-  ( x = y -> ( ph -> ps ) )
6 2 1 5 cbvaliw
 |-  ( A. x ph -> A. y ps )
7 4 biimprd
 |-  ( x = y -> ( ps -> ph ) )
8 7 equcoms
 |-  ( y = x -> ( ps -> ph ) )
9 3 8 spimw
 |-  ( A. y ps -> ph )
10 6 9 syl
 |-  ( A. x ph -> ph )