| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spheres.b |
|- B = ( Base ` W ) |
| 2 |
|
spheres.l |
|- S = ( Sphere ` W ) |
| 3 |
|
spheres.d |
|- D = ( dist ` W ) |
| 4 |
1 2 3
|
spheres |
|- ( W e. V -> S = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> S = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) |
| 6 |
|
oveq2 |
|- ( x = X -> ( p D x ) = ( p D X ) ) |
| 7 |
|
id |
|- ( r = R -> r = R ) |
| 8 |
6 7
|
eqeqan12d |
|- ( ( x = X /\ r = R ) -> ( ( p D x ) = r <-> ( p D X ) = R ) ) |
| 9 |
8
|
rabbidv |
|- ( ( x = X /\ r = R ) -> { p e. B | ( p D x ) = r } = { p e. B | ( p D X ) = R } ) |
| 10 |
9
|
adantl |
|- ( ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) /\ ( x = X /\ r = R ) ) -> { p e. B | ( p D x ) = r } = { p e. B | ( p D X ) = R } ) |
| 11 |
|
simp2 |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> X e. B ) |
| 12 |
|
simp3 |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> R e. ( 0 [,] +oo ) ) |
| 13 |
1
|
fvexi |
|- B e. _V |
| 14 |
13
|
rabex |
|- { p e. B | ( p D X ) = R } e. _V |
| 15 |
14
|
a1i |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> { p e. B | ( p D X ) = R } e. _V ) |
| 16 |
5 10 11 12 15
|
ovmpod |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> ( X S R ) = { p e. B | ( p D X ) = R } ) |