Metamath Proof Explorer


Theorem spimedv

Description: Deduction version of spimev . Version of spimed with a disjoint variable condition, which does not require ax-13 . See spime for a non-deduction version. (Contributed by NM, 14-May-1993) (Revised by BJ, 31-May-2019)

Ref Expression
Hypotheses spimedv.1
|- ( ch -> F/ x ph )
spimedv.2
|- ( x = y -> ( ph -> ps ) )
Assertion spimedv
|- ( ch -> ( ph -> E. x ps ) )

Proof

Step Hyp Ref Expression
1 spimedv.1
 |-  ( ch -> F/ x ph )
2 spimedv.2
 |-  ( x = y -> ( ph -> ps ) )
3 1 nf5rd
 |-  ( ch -> ( ph -> A. x ph ) )
4 ax6ev
 |-  E. x x = y
5 4 2 eximii
 |-  E. x ( ph -> ps )
6 5 19.35i
 |-  ( A. x ph -> E. x ps )
7 3 6 syl6
 |-  ( ch -> ( ph -> E. x ps ) )