Metamath Proof Explorer


Theorem spimefv

Description: Version of spime with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 31-May-2019)

Ref Expression
Hypotheses spimefv.1
|- F/ x ph
spimefv.2
|- ( x = y -> ( ph -> ps ) )
Assertion spimefv
|- ( ph -> E. x ps )

Proof

Step Hyp Ref Expression
1 spimefv.1
 |-  F/ x ph
2 spimefv.2
 |-  ( x = y -> ( ph -> ps ) )
3 1 a1i
 |-  ( T. -> F/ x ph )
4 3 2 spimedv
 |-  ( T. -> ( ph -> E. x ps ) )
5 4 mptru
 |-  ( ph -> E. x ps )