Metamath Proof Explorer


Theorem spimw

Description: Specialization. Lemma 8 of KalishMontague p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 7-Aug-2017)

Ref Expression
Hypotheses spimw.1
|- ( -. ps -> A. x -. ps )
spimw.2
|- ( x = y -> ( ph -> ps ) )
Assertion spimw
|- ( A. x ph -> ps )

Proof

Step Hyp Ref Expression
1 spimw.1
 |-  ( -. ps -> A. x -. ps )
2 spimw.2
 |-  ( x = y -> ( ph -> ps ) )
3 ax6v
 |-  -. A. x -. x = y
4 1 2 spimfw
 |-  ( -. A. x -. x = y -> ( A. x ph -> ps ) )
5 3 4 ax-mp
 |-  ( A. x ph -> ps )