Step |
Hyp |
Ref |
Expression |
1 |
|
spllen.s |
|- ( ph -> S e. Word A ) |
2 |
|
spllen.f |
|- ( ph -> F e. ( 0 ... T ) ) |
3 |
|
spllen.t |
|- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
4 |
|
spllen.r |
|- ( ph -> R e. Word A ) |
5 |
|
splfv1.x |
|- ( ph -> X e. ( 0 ..^ F ) ) |
6 |
|
splval |
|- ( ( S e. Word A /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ R e. Word A ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
7 |
1 2 3 4 6
|
syl13anc |
|- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
8 |
7
|
fveq1d |
|- ( ph -> ( ( S splice <. F , T , R >. ) ` X ) = ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` X ) ) |
9 |
|
pfxcl |
|- ( S e. Word A -> ( S prefix F ) e. Word A ) |
10 |
1 9
|
syl |
|- ( ph -> ( S prefix F ) e. Word A ) |
11 |
|
ccatcl |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( ( S prefix F ) ++ R ) e. Word A ) |
12 |
10 4 11
|
syl2anc |
|- ( ph -> ( ( S prefix F ) ++ R ) e. Word A ) |
13 |
|
swrdcl |
|- ( S e. Word A -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
14 |
1 13
|
syl |
|- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
15 |
2
|
elfzelzd |
|- ( ph -> F e. ZZ ) |
16 |
15
|
uzidd |
|- ( ph -> F e. ( ZZ>= ` F ) ) |
17 |
|
lencl |
|- ( R e. Word A -> ( # ` R ) e. NN0 ) |
18 |
4 17
|
syl |
|- ( ph -> ( # ` R ) e. NN0 ) |
19 |
|
uzaddcl |
|- ( ( F e. ( ZZ>= ` F ) /\ ( # ` R ) e. NN0 ) -> ( F + ( # ` R ) ) e. ( ZZ>= ` F ) ) |
20 |
16 18 19
|
syl2anc |
|- ( ph -> ( F + ( # ` R ) ) e. ( ZZ>= ` F ) ) |
21 |
|
fzoss2 |
|- ( ( F + ( # ` R ) ) e. ( ZZ>= ` F ) -> ( 0 ..^ F ) C_ ( 0 ..^ ( F + ( # ` R ) ) ) ) |
22 |
20 21
|
syl |
|- ( ph -> ( 0 ..^ F ) C_ ( 0 ..^ ( F + ( # ` R ) ) ) ) |
23 |
22 5
|
sseldd |
|- ( ph -> X e. ( 0 ..^ ( F + ( # ` R ) ) ) ) |
24 |
|
ccatlen |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
25 |
10 4 24
|
syl2anc |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
26 |
|
fzass4 |
|- ( ( F e. ( 0 ... ( # ` S ) ) /\ T e. ( F ... ( # ` S ) ) ) <-> ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) ) ) |
27 |
26
|
biimpri |
|- ( ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) ) -> ( F e. ( 0 ... ( # ` S ) ) /\ T e. ( F ... ( # ` S ) ) ) ) |
28 |
27
|
simpld |
|- ( ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) ) -> F e. ( 0 ... ( # ` S ) ) ) |
29 |
2 3 28
|
syl2anc |
|- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
30 |
|
pfxlen |
|- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
31 |
1 29 30
|
syl2anc |
|- ( ph -> ( # ` ( S prefix F ) ) = F ) |
32 |
31
|
oveq1d |
|- ( ph -> ( ( # ` ( S prefix F ) ) + ( # ` R ) ) = ( F + ( # ` R ) ) ) |
33 |
25 32
|
eqtrd |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( F + ( # ` R ) ) ) |
34 |
33
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) = ( 0 ..^ ( F + ( # ` R ) ) ) ) |
35 |
23 34
|
eleqtrrd |
|- ( ph -> X e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
36 |
|
ccatval1 |
|- ( ( ( ( S prefix F ) ++ R ) e. Word A /\ ( S substr <. T , ( # ` S ) >. ) e. Word A /\ X e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` X ) = ( ( ( S prefix F ) ++ R ) ` X ) ) |
37 |
12 14 35 36
|
syl3anc |
|- ( ph -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` X ) = ( ( ( S prefix F ) ++ R ) ` X ) ) |
38 |
31
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( S prefix F ) ) ) = ( 0 ..^ F ) ) |
39 |
5 38
|
eleqtrrd |
|- ( ph -> X e. ( 0 ..^ ( # ` ( S prefix F ) ) ) ) |
40 |
|
ccatval1 |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A /\ X e. ( 0 ..^ ( # ` ( S prefix F ) ) ) ) -> ( ( ( S prefix F ) ++ R ) ` X ) = ( ( S prefix F ) ` X ) ) |
41 |
10 4 39 40
|
syl3anc |
|- ( ph -> ( ( ( S prefix F ) ++ R ) ` X ) = ( ( S prefix F ) ` X ) ) |
42 |
|
pfxfv |
|- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) /\ X e. ( 0 ..^ F ) ) -> ( ( S prefix F ) ` X ) = ( S ` X ) ) |
43 |
1 29 5 42
|
syl3anc |
|- ( ph -> ( ( S prefix F ) ` X ) = ( S ` X ) ) |
44 |
41 43
|
eqtrd |
|- ( ph -> ( ( ( S prefix F ) ++ R ) ` X ) = ( S ` X ) ) |
45 |
8 37 44
|
3eqtrd |
|- ( ph -> ( ( S splice <. F , T , R >. ) ` X ) = ( S ` X ) ) |