| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spllen.s |
|- ( ph -> S e. Word A ) |
| 2 |
|
spllen.f |
|- ( ph -> F e. ( 0 ... T ) ) |
| 3 |
|
spllen.t |
|- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
| 4 |
|
spllen.r |
|- ( ph -> R e. Word A ) |
| 5 |
|
splval |
|- ( ( S e. Word A /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ R e. Word A ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 6 |
1 2 3 4 5
|
syl13anc |
|- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 7 |
6
|
fveq2d |
|- ( ph -> ( # ` ( S splice <. F , T , R >. ) ) = ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 8 |
|
pfxcl |
|- ( S e. Word A -> ( S prefix F ) e. Word A ) |
| 9 |
1 8
|
syl |
|- ( ph -> ( S prefix F ) e. Word A ) |
| 10 |
|
ccatcl |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( ( S prefix F ) ++ R ) e. Word A ) |
| 11 |
9 4 10
|
syl2anc |
|- ( ph -> ( ( S prefix F ) ++ R ) e. Word A ) |
| 12 |
|
swrdcl |
|- ( S e. Word A -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
| 13 |
1 12
|
syl |
|- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
| 14 |
|
ccatlen |
|- ( ( ( ( S prefix F ) ++ R ) e. Word A /\ ( S substr <. T , ( # ` S ) >. ) e. Word A ) -> ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 15 |
11 13 14
|
syl2anc |
|- ( ph -> ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) ) |
| 16 |
|
lencl |
|- ( R e. Word A -> ( # ` R ) e. NN0 ) |
| 17 |
16
|
nn0cnd |
|- ( R e. Word A -> ( # ` R ) e. CC ) |
| 18 |
4 17
|
syl |
|- ( ph -> ( # ` R ) e. CC ) |
| 19 |
|
elfzelz |
|- ( F e. ( 0 ... T ) -> F e. ZZ ) |
| 20 |
19
|
zcnd |
|- ( F e. ( 0 ... T ) -> F e. CC ) |
| 21 |
2 20
|
syl |
|- ( ph -> F e. CC ) |
| 22 |
18 21
|
addcld |
|- ( ph -> ( ( # ` R ) + F ) e. CC ) |
| 23 |
|
elfzel2 |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ZZ ) |
| 24 |
23
|
zcnd |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. CC ) |
| 25 |
3 24
|
syl |
|- ( ph -> ( # ` S ) e. CC ) |
| 26 |
|
elfzelz |
|- ( T e. ( 0 ... ( # ` S ) ) -> T e. ZZ ) |
| 27 |
26
|
zcnd |
|- ( T e. ( 0 ... ( # ` S ) ) -> T e. CC ) |
| 28 |
3 27
|
syl |
|- ( ph -> T e. CC ) |
| 29 |
22 25 28
|
addsub12d |
|- ( ph -> ( ( ( # ` R ) + F ) + ( ( # ` S ) - T ) ) = ( ( # ` S ) + ( ( ( # ` R ) + F ) - T ) ) ) |
| 30 |
|
ccatlen |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
| 31 |
9 4 30
|
syl2anc |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
| 32 |
|
elfzuz |
|- ( F e. ( 0 ... T ) -> F e. ( ZZ>= ` 0 ) ) |
| 33 |
2 32
|
syl |
|- ( ph -> F e. ( ZZ>= ` 0 ) ) |
| 34 |
|
elfzuz3 |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` T ) ) |
| 35 |
3 34
|
syl |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` T ) ) |
| 36 |
|
elfzuz3 |
|- ( F e. ( 0 ... T ) -> T e. ( ZZ>= ` F ) ) |
| 37 |
2 36
|
syl |
|- ( ph -> T e. ( ZZ>= ` F ) ) |
| 38 |
|
uztrn |
|- ( ( ( # ` S ) e. ( ZZ>= ` T ) /\ T e. ( ZZ>= ` F ) ) -> ( # ` S ) e. ( ZZ>= ` F ) ) |
| 39 |
35 37 38
|
syl2anc |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` F ) ) |
| 40 |
|
elfzuzb |
|- ( F e. ( 0 ... ( # ` S ) ) <-> ( F e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. ( ZZ>= ` F ) ) ) |
| 41 |
33 39 40
|
sylanbrc |
|- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
| 42 |
|
pfxlen |
|- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
| 43 |
1 41 42
|
syl2anc |
|- ( ph -> ( # ` ( S prefix F ) ) = F ) |
| 44 |
43
|
oveq1d |
|- ( ph -> ( ( # ` ( S prefix F ) ) + ( # ` R ) ) = ( F + ( # ` R ) ) ) |
| 45 |
21 18
|
addcomd |
|- ( ph -> ( F + ( # ` R ) ) = ( ( # ` R ) + F ) ) |
| 46 |
31 44 45
|
3eqtrd |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` R ) + F ) ) |
| 47 |
|
elfzuz2 |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
| 48 |
|
eluzfz2 |
|- ( ( # ` S ) e. ( ZZ>= ` 0 ) -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
| 49 |
3 47 48
|
3syl |
|- ( ph -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
| 50 |
|
swrdlen |
|- ( ( S e. Word A /\ T e. ( 0 ... ( # ` S ) ) /\ ( # ` S ) e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. T , ( # ` S ) >. ) ) = ( ( # ` S ) - T ) ) |
| 51 |
1 3 49 50
|
syl3anc |
|- ( ph -> ( # ` ( S substr <. T , ( # ` S ) >. ) ) = ( ( # ` S ) - T ) ) |
| 52 |
46 51
|
oveq12d |
|- ( ph -> ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( ( # ` R ) + F ) + ( ( # ` S ) - T ) ) ) |
| 53 |
18 28 21
|
subsub3d |
|- ( ph -> ( ( # ` R ) - ( T - F ) ) = ( ( ( # ` R ) + F ) - T ) ) |
| 54 |
53
|
oveq2d |
|- ( ph -> ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) = ( ( # ` S ) + ( ( ( # ` R ) + F ) - T ) ) ) |
| 55 |
29 52 54
|
3eqtr4d |
|- ( ph -> ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) ) |
| 56 |
7 15 55
|
3eqtrd |
|- ( ph -> ( # ` ( S splice <. F , T , R >. ) ) = ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) ) |