Step |
Hyp |
Ref |
Expression |
1 |
|
spllen.s |
|- ( ph -> S e. Word A ) |
2 |
|
spllen.f |
|- ( ph -> F e. ( 0 ... T ) ) |
3 |
|
spllen.t |
|- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
4 |
|
spllen.r |
|- ( ph -> R e. Word A ) |
5 |
|
splval |
|- ( ( S e. Word A /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ R e. Word A ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
6 |
1 2 3 4 5
|
syl13anc |
|- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
7 |
6
|
fveq2d |
|- ( ph -> ( # ` ( S splice <. F , T , R >. ) ) = ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) ) |
8 |
|
pfxcl |
|- ( S e. Word A -> ( S prefix F ) e. Word A ) |
9 |
1 8
|
syl |
|- ( ph -> ( S prefix F ) e. Word A ) |
10 |
|
ccatcl |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( ( S prefix F ) ++ R ) e. Word A ) |
11 |
9 4 10
|
syl2anc |
|- ( ph -> ( ( S prefix F ) ++ R ) e. Word A ) |
12 |
|
swrdcl |
|- ( S e. Word A -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
13 |
1 12
|
syl |
|- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
14 |
|
ccatlen |
|- ( ( ( ( S prefix F ) ++ R ) e. Word A /\ ( S substr <. T , ( # ` S ) >. ) e. Word A ) -> ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) ) |
15 |
11 13 14
|
syl2anc |
|- ( ph -> ( # ` ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) ) |
16 |
|
lencl |
|- ( R e. Word A -> ( # ` R ) e. NN0 ) |
17 |
16
|
nn0cnd |
|- ( R e. Word A -> ( # ` R ) e. CC ) |
18 |
4 17
|
syl |
|- ( ph -> ( # ` R ) e. CC ) |
19 |
|
elfzelz |
|- ( F e. ( 0 ... T ) -> F e. ZZ ) |
20 |
19
|
zcnd |
|- ( F e. ( 0 ... T ) -> F e. CC ) |
21 |
2 20
|
syl |
|- ( ph -> F e. CC ) |
22 |
18 21
|
addcld |
|- ( ph -> ( ( # ` R ) + F ) e. CC ) |
23 |
|
elfzel2 |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ZZ ) |
24 |
23
|
zcnd |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. CC ) |
25 |
3 24
|
syl |
|- ( ph -> ( # ` S ) e. CC ) |
26 |
|
elfzelz |
|- ( T e. ( 0 ... ( # ` S ) ) -> T e. ZZ ) |
27 |
26
|
zcnd |
|- ( T e. ( 0 ... ( # ` S ) ) -> T e. CC ) |
28 |
3 27
|
syl |
|- ( ph -> T e. CC ) |
29 |
22 25 28
|
addsub12d |
|- ( ph -> ( ( ( # ` R ) + F ) + ( ( # ` S ) - T ) ) = ( ( # ` S ) + ( ( ( # ` R ) + F ) - T ) ) ) |
30 |
|
ccatlen |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
31 |
9 4 30
|
syl2anc |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
32 |
|
elfzuz |
|- ( F e. ( 0 ... T ) -> F e. ( ZZ>= ` 0 ) ) |
33 |
2 32
|
syl |
|- ( ph -> F e. ( ZZ>= ` 0 ) ) |
34 |
|
elfzuz3 |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` T ) ) |
35 |
3 34
|
syl |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` T ) ) |
36 |
|
elfzuz3 |
|- ( F e. ( 0 ... T ) -> T e. ( ZZ>= ` F ) ) |
37 |
2 36
|
syl |
|- ( ph -> T e. ( ZZ>= ` F ) ) |
38 |
|
uztrn |
|- ( ( ( # ` S ) e. ( ZZ>= ` T ) /\ T e. ( ZZ>= ` F ) ) -> ( # ` S ) e. ( ZZ>= ` F ) ) |
39 |
35 37 38
|
syl2anc |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` F ) ) |
40 |
|
elfzuzb |
|- ( F e. ( 0 ... ( # ` S ) ) <-> ( F e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. ( ZZ>= ` F ) ) ) |
41 |
33 39 40
|
sylanbrc |
|- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
42 |
|
pfxlen |
|- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
43 |
1 41 42
|
syl2anc |
|- ( ph -> ( # ` ( S prefix F ) ) = F ) |
44 |
43
|
oveq1d |
|- ( ph -> ( ( # ` ( S prefix F ) ) + ( # ` R ) ) = ( F + ( # ` R ) ) ) |
45 |
21 18
|
addcomd |
|- ( ph -> ( F + ( # ` R ) ) = ( ( # ` R ) + F ) ) |
46 |
31 44 45
|
3eqtrd |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` R ) + F ) ) |
47 |
|
elfzuz2 |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
48 |
|
eluzfz2 |
|- ( ( # ` S ) e. ( ZZ>= ` 0 ) -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
49 |
3 47 48
|
3syl |
|- ( ph -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
50 |
|
swrdlen |
|- ( ( S e. Word A /\ T e. ( 0 ... ( # ` S ) ) /\ ( # ` S ) e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. T , ( # ` S ) >. ) ) = ( ( # ` S ) - T ) ) |
51 |
1 3 49 50
|
syl3anc |
|- ( ph -> ( # ` ( S substr <. T , ( # ` S ) >. ) ) = ( ( # ` S ) - T ) ) |
52 |
46 51
|
oveq12d |
|- ( ph -> ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( ( # ` R ) + F ) + ( ( # ` S ) - T ) ) ) |
53 |
18 28 21
|
subsub3d |
|- ( ph -> ( ( # ` R ) - ( T - F ) ) = ( ( ( # ` R ) + F ) - T ) ) |
54 |
53
|
oveq2d |
|- ( ph -> ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) = ( ( # ` S ) + ( ( ( # ` R ) + F ) - T ) ) ) |
55 |
29 52 54
|
3eqtr4d |
|- ( ph -> ( ( # ` ( ( S prefix F ) ++ R ) ) + ( # ` ( S substr <. T , ( # ` S ) >. ) ) ) = ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) ) |
56 |
7 15 55
|
3eqtrd |
|- ( ph -> ( # ` ( S splice <. F , T , R >. ) ) = ( ( # ` S ) + ( ( # ` R ) - ( T - F ) ) ) ) |