Metamath Proof Explorer


Theorem sprmpod

Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 20-Jun-2019)

Ref Expression
Hypotheses sprmpod.1
|- M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } )
sprmpod.2
|- ( ( ph /\ v = V /\ e = E ) -> ( ch <-> ps ) )
sprmpod.3
|- ( ph -> ( V e. _V /\ E e. _V ) )
sprmpod.4
|- ( ph -> A. x A. y ( x ( V R E ) y -> th ) )
sprmpod.5
|- ( ph -> { <. x , y >. | th } e. _V )
Assertion sprmpod
|- ( ph -> ( V M E ) = { <. x , y >. | ( x ( V R E ) y /\ ps ) } )

Proof

Step Hyp Ref Expression
1 sprmpod.1
 |-  M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } )
2 sprmpod.2
 |-  ( ( ph /\ v = V /\ e = E ) -> ( ch <-> ps ) )
3 sprmpod.3
 |-  ( ph -> ( V e. _V /\ E e. _V ) )
4 sprmpod.4
 |-  ( ph -> A. x A. y ( x ( V R E ) y -> th ) )
5 sprmpod.5
 |-  ( ph -> { <. x , y >. | th } e. _V )
6 1 a1i
 |-  ( ph -> M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } ) )
7 oveq12
 |-  ( ( v = V /\ e = E ) -> ( v R e ) = ( V R E ) )
8 7 breqd
 |-  ( ( v = V /\ e = E ) -> ( x ( v R e ) y <-> x ( V R E ) y ) )
9 8 adantl
 |-  ( ( ph /\ ( v = V /\ e = E ) ) -> ( x ( v R e ) y <-> x ( V R E ) y ) )
10 2 3expb
 |-  ( ( ph /\ ( v = V /\ e = E ) ) -> ( ch <-> ps ) )
11 9 10 anbi12d
 |-  ( ( ph /\ ( v = V /\ e = E ) ) -> ( ( x ( v R e ) y /\ ch ) <-> ( x ( V R E ) y /\ ps ) ) )
12 11 opabbidv
 |-  ( ( ph /\ ( v = V /\ e = E ) ) -> { <. x , y >. | ( x ( v R e ) y /\ ch ) } = { <. x , y >. | ( x ( V R E ) y /\ ps ) } )
13 3 simpld
 |-  ( ph -> V e. _V )
14 3 simprd
 |-  ( ph -> E e. _V )
15 opabbrex
 |-  ( ( A. x A. y ( x ( V R E ) y -> th ) /\ { <. x , y >. | th } e. _V ) -> { <. x , y >. | ( x ( V R E ) y /\ ps ) } e. _V )
16 4 5 15 syl2anc
 |-  ( ph -> { <. x , y >. | ( x ( V R E ) y /\ ps ) } e. _V )
17 6 12 13 14 16 ovmpod
 |-  ( ph -> ( V M E ) = { <. x , y >. | ( x ( V R E ) y /\ ps ) } )