Step |
Hyp |
Ref |
Expression |
1 |
|
sprmpod.1 |
|- M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } ) |
2 |
|
sprmpod.2 |
|- ( ( ph /\ v = V /\ e = E ) -> ( ch <-> ps ) ) |
3 |
|
sprmpod.3 |
|- ( ph -> ( V e. _V /\ E e. _V ) ) |
4 |
|
sprmpod.4 |
|- ( ph -> A. x A. y ( x ( V R E ) y -> th ) ) |
5 |
|
sprmpod.5 |
|- ( ph -> { <. x , y >. | th } e. _V ) |
6 |
1
|
a1i |
|- ( ph -> M = ( v e. _V , e e. _V |-> { <. x , y >. | ( x ( v R e ) y /\ ch ) } ) ) |
7 |
|
oveq12 |
|- ( ( v = V /\ e = E ) -> ( v R e ) = ( V R E ) ) |
8 |
7
|
breqd |
|- ( ( v = V /\ e = E ) -> ( x ( v R e ) y <-> x ( V R E ) y ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ ( v = V /\ e = E ) ) -> ( x ( v R e ) y <-> x ( V R E ) y ) ) |
10 |
2
|
3expb |
|- ( ( ph /\ ( v = V /\ e = E ) ) -> ( ch <-> ps ) ) |
11 |
9 10
|
anbi12d |
|- ( ( ph /\ ( v = V /\ e = E ) ) -> ( ( x ( v R e ) y /\ ch ) <-> ( x ( V R E ) y /\ ps ) ) ) |
12 |
11
|
opabbidv |
|- ( ( ph /\ ( v = V /\ e = E ) ) -> { <. x , y >. | ( x ( v R e ) y /\ ch ) } = { <. x , y >. | ( x ( V R E ) y /\ ps ) } ) |
13 |
3
|
simpld |
|- ( ph -> V e. _V ) |
14 |
3
|
simprd |
|- ( ph -> E e. _V ) |
15 |
|
opabbrex |
|- ( ( A. x A. y ( x ( V R E ) y -> th ) /\ { <. x , y >. | th } e. _V ) -> { <. x , y >. | ( x ( V R E ) y /\ ps ) } e. _V ) |
16 |
4 5 15
|
syl2anc |
|- ( ph -> { <. x , y >. | ( x ( V R E ) y /\ ps ) } e. _V ) |
17 |
6 12 13 14 16
|
ovmpod |
|- ( ph -> ( V M E ) = { <. x , y >. | ( x ( V R E ) y /\ ps ) } ) |