Metamath Proof Explorer


Theorem sps

Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993)

Ref Expression
Hypothesis sps.1
|- ( ph -> ps )
Assertion sps
|- ( A. x ph -> ps )

Proof

Step Hyp Ref Expression
1 sps.1
 |-  ( ph -> ps )
2 sp
 |-  ( A. x ph -> ph )
3 2 1 syl
 |-  ( A. x ph -> ps )