Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of Quine p. 44. This is Frege's ninth axiom per Proposition 58 of Frege1879 p. 51. See also stdpc4 and rspsbc . (Contributed by NM, 16-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | spsbc | |- ( A e. V -> ( A. x ph -> [. A / x ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 | |- ( A. x ph -> [ y / x ] ph ) |
|
2 | sbsbc | |- ( [ y / x ] ph <-> [. y / x ]. ph ) |
|
3 | 1 2 | sylib | |- ( A. x ph -> [. y / x ]. ph ) |
4 | dfsbcq | |- ( y = A -> ( [. y / x ]. ph <-> [. A / x ]. ph ) ) |
|
5 | 3 4 | syl5ib | |- ( y = A -> ( A. x ph -> [. A / x ]. ph ) ) |
6 | 5 | vtocleg | |- ( A e. V -> ( A. x ph -> [. A / x ]. ph ) ) |