Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of Quine p. 44. See also stdpc4 and rspsbc . (Contributed by Mario Carneiro, 9-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spsbcd.1 | |- ( ph -> A e. V ) |
|
spsbcd.2 | |- ( ph -> A. x ps ) |
||
Assertion | spsbcd | |- ( ph -> [. A / x ]. ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbcd.1 | |- ( ph -> A e. V ) |
|
2 | spsbcd.2 | |- ( ph -> A. x ps ) |
|
3 | spsbc | |- ( A e. V -> ( A. x ps -> [. A / x ]. ps ) ) |
|
4 | 1 2 3 | sylc | |- ( ph -> [. A / x ]. ps ) |