Metamath Proof Explorer


Theorem spsbcd

Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of Quine p. 44. See also stdpc4 and rspsbc . (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Hypotheses spsbcd.1
|- ( ph -> A e. V )
spsbcd.2
|- ( ph -> A. x ps )
Assertion spsbcd
|- ( ph -> [. A / x ]. ps )

Proof

Step Hyp Ref Expression
1 spsbcd.1
 |-  ( ph -> A e. V )
2 spsbcd.2
 |-  ( ph -> A. x ps )
3 spsbc
 |-  ( A e. V -> ( A. x ps -> [. A / x ]. ps ) )
4 1 2 3 sylc
 |-  ( ph -> [. A / x ]. ps )