Metamath Proof Explorer


Theorem spsd

Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994)

Ref Expression
Hypothesis spsd.1
|- ( ph -> ( ps -> ch ) )
Assertion spsd
|- ( ph -> ( A. x ps -> ch ) )

Proof

Step Hyp Ref Expression
1 spsd.1
 |-  ( ph -> ( ps -> ch ) )
2 sp
 |-  ( A. x ps -> ps )
3 2 1 syl5
 |-  ( ph -> ( A. x ps -> ch ) )