| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( F ( Trails ` G ) P /\ Fun `' P ) -> F ( Trails ` G ) P ) | 
						
							| 2 |  | funres11 |  |-  ( Fun `' P -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( F ( Trails ` G ) P /\ Fun `' P ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 4 |  | imain |  |-  ( Fun `' P -> ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 5 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 6 | 5 | oveq1i |  |-  ( 1 ..^ ( # ` F ) ) = ( ( 0 + 1 ) ..^ ( # ` F ) ) | 
						
							| 7 | 6 | ineq2i |  |-  ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) = ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) | 
						
							| 8 |  | 0z |  |-  0 e. ZZ | 
						
							| 9 |  | prinfzo0 |  |-  ( 0 e. ZZ -> ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) = (/) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) = (/) | 
						
							| 11 | 7 10 | eqtri |  |-  ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) = (/) | 
						
							| 12 | 11 | imaeq2i |  |-  ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = ( P " (/) ) | 
						
							| 13 |  | ima0 |  |-  ( P " (/) ) = (/) | 
						
							| 14 | 12 13 | eqtri |  |-  ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = (/) | 
						
							| 15 | 4 14 | eqtr3di |  |-  ( Fun `' P -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) | 
						
							| 17 | 1 3 16 | 3jca |  |-  ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) | 
						
							| 18 |  | isspth |  |-  ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) | 
						
							| 19 |  | ispth |  |-  ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) | 
						
							| 20 | 17 18 19 | 3imtr4i |  |-  ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |