Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> F ( Trails ` G ) P ) |
2 |
|
funres11 |
|- ( Fun `' P -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
3 |
2
|
adantl |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
4 |
|
imain |
|- ( Fun `' P -> ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
5 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
6 |
5
|
oveq1i |
|- ( 1 ..^ ( # ` F ) ) = ( ( 0 + 1 ) ..^ ( # ` F ) ) |
7 |
6
|
ineq2i |
|- ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) = ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) |
8 |
|
0z |
|- 0 e. ZZ |
9 |
|
prinfzo0 |
|- ( 0 e. ZZ -> ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) = (/) ) |
10 |
8 9
|
ax-mp |
|- ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) = (/) |
11 |
7 10
|
eqtri |
|- ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) = (/) |
12 |
11
|
imaeq2i |
|- ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = ( P " (/) ) |
13 |
|
ima0 |
|- ( P " (/) ) = (/) |
14 |
12 13
|
eqtri |
|- ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = (/) |
15 |
4 14
|
eqtr3di |
|- ( Fun `' P -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
16 |
15
|
adantl |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
17 |
1 3 16
|
3jca |
|- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
18 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
19 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
20 |
17 18 19
|
3imtr4i |
|- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |