Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
spthonprop |
|- ( F ( A ( SPathsOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) |
3 |
1
|
istrlson |
|- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
4 |
3
|
3adantl1 |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
5 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
6 |
5
|
a1i |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) ) |
7 |
4 6
|
anbi12d |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) /\ ( F ( Trails ` G ) P /\ Fun `' P ) ) ) ) |
8 |
1
|
wlkonprop |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
9 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
10 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
11 |
|
df-f1 |
|- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) ) |
12 |
|
eqeq2 |
|- ( A = B -> ( ( P ` 0 ) = A <-> ( P ` 0 ) = B ) ) |
13 |
|
eqtr3 |
|- ( ( ( P ` ( # ` F ) ) = B /\ ( P ` 0 ) = B ) -> ( P ` ( # ` F ) ) = ( P ` 0 ) ) |
14 |
|
elnn0uz |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
15 |
|
eluzfz2 |
|- ( ( # ` F ) e. ( ZZ>= ` 0 ) -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
16 |
14 15
|
sylbi |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
17 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
18 |
16 17
|
jca |
|- ( ( # ` F ) e. NN0 -> ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
19 |
|
f1veqaeq |
|- ( ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( # ` F ) = 0 ) ) |
20 |
18 19
|
sylan2 |
|- ( ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( # ` F ) = 0 ) ) |
21 |
20
|
ex |
|- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( ( # ` F ) e. NN0 -> ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( # ` F ) = 0 ) ) ) |
22 |
21
|
com13 |
|- ( ( P ` ( # ` F ) ) = ( P ` 0 ) -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) |
23 |
13 22
|
syl |
|- ( ( ( P ` ( # ` F ) ) = B /\ ( P ` 0 ) = B ) -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) |
24 |
23
|
expcom |
|- ( ( P ` 0 ) = B -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) ) |
25 |
12 24
|
syl6bi |
|- ( A = B -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` F ) = 0 ) ) ) ) ) |
26 |
25
|
com15 |
|- ( P : ( 0 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) |
27 |
11 26
|
sylbir |
|- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' P ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) |
28 |
27
|
expcom |
|- ( Fun `' P -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( ( # ` F ) e. NN0 -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) ) |
29 |
28
|
com15 |
|- ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( Fun `' P -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) ) |
30 |
9 10 29
|
sylc |
|- ( F ( Walks ` G ) P -> ( ( P ` 0 ) = A -> ( ( P ` ( # ` F ) ) = B -> ( Fun `' P -> ( A = B -> ( # ` F ) = 0 ) ) ) ) ) |
31 |
30
|
3imp1 |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ Fun `' P ) -> ( A = B -> ( # ` F ) = 0 ) ) |
32 |
|
fveqeq2 |
|- ( ( # ` F ) = 0 -> ( ( P ` ( # ` F ) ) = B <-> ( P ` 0 ) = B ) ) |
33 |
32
|
anbi2d |
|- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) ) ) |
34 |
|
eqtr2 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) -> A = B ) |
35 |
33 34
|
syl6bi |
|- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> A = B ) ) |
36 |
35
|
com12 |
|- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> A = B ) ) |
37 |
36
|
3adant1 |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> A = B ) ) |
38 |
37
|
adantr |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ Fun `' P ) -> ( ( # ` F ) = 0 -> A = B ) ) |
39 |
31 38
|
impbid |
|- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ Fun `' P ) -> ( A = B <-> ( # ` F ) = 0 ) ) |
40 |
39
|
ex |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( Fun `' P -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
41 |
40
|
3ad2ant3 |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( Fun `' P -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
42 |
8 41
|
syl |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( Fun `' P -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
43 |
42
|
adantld |
|- ( F ( A ( WalksOn ` G ) B ) P -> ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
44 |
43
|
adantr |
|- ( ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) -> ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
45 |
44
|
imp |
|- ( ( ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) /\ ( F ( Trails ` G ) P /\ Fun `' P ) ) -> ( A = B <-> ( # ` F ) = 0 ) ) |
46 |
7 45
|
syl6bi |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) -> ( A = B <-> ( # ` F ) = 0 ) ) ) |
47 |
46
|
3impia |
|- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( A = B <-> ( # ` F ) = 0 ) ) |
48 |
2 47
|
syl |
|- ( F ( A ( SPathsOn ` G ) B ) P -> ( A = B <-> ( # ` F ) = 0 ) ) |