Description: A simple path between to vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 18-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | spthonisspth | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( SPaths ` G ) P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
2 | 1 | spthonprop | |- ( F ( A ( SPathsOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) |
3 | simp3r | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> F ( SPaths ` G ) P ) |
|
4 | 2 3 | syl | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( SPaths ` G ) P ) |