| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | spthonprop |  |-  ( F ( A ( SPathsOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) | 
						
							| 3 |  | 3simpc |  |-  ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 4 | 3 | 3anim1i |  |-  ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) | 
						
							| 5 |  | spthispth |  |-  ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) | 
						
							| 6 | 5 | anim2i |  |-  ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) | 
						
							| 7 | 6 | 3ad2ant3 |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) | 
						
							| 8 | 1 | ispthson |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) | 
						
							| 10 | 7 9 | mpbird |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> F ( A ( PathsOn ` G ) B ) P ) | 
						
							| 11 | 2 4 10 | 3syl |  |-  ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( PathsOn ` G ) B ) P ) |