| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pthsonfval.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | 1vgrex |  |-  ( A e. V -> G e. _V ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A e. V /\ B e. V ) -> G e. _V ) | 
						
							| 4 |  | simpl |  |-  ( ( A e. V /\ B e. V ) -> A e. V ) | 
						
							| 5 | 4 1 | eleqtrdi |  |-  ( ( A e. V /\ B e. V ) -> A e. ( Vtx ` G ) ) | 
						
							| 6 |  | simpr |  |-  ( ( A e. V /\ B e. V ) -> B e. V ) | 
						
							| 7 | 6 1 | eleqtrdi |  |-  ( ( A e. V /\ B e. V ) -> B e. ( Vtx ` G ) ) | 
						
							| 8 |  | df-spthson |  |-  SPathsOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( SPaths ` g ) p ) } ) ) | 
						
							| 9 | 3 5 7 8 | mptmpoopabovd |  |-  ( ( A e. V /\ B e. V ) -> ( A ( SPathsOn ` G ) B ) = { <. f , p >. | ( f ( A ( TrailsOn ` G ) B ) p /\ f ( SPaths ` G ) p ) } ) |