Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
2 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
3 |
|
mulid1 |
|- ( A e. CC -> ( A x. 1 ) = A ) |
4 |
3
|
eqcomd |
|- ( A e. CC -> A = ( A x. 1 ) ) |
5 |
2 4
|
eqeq12d |
|- ( A e. CC -> ( ( A ^ 2 ) = A <-> ( A x. A ) = ( A x. 1 ) ) ) |
6 |
5
|
adantr |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A <-> ( A x. A ) = ( A x. 1 ) ) ) |
7 |
|
ax-1cn |
|- 1 e. CC |
8 |
|
mulcan |
|- ( ( A e. CC /\ 1 e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
9 |
7 8
|
mp3an2 |
|- ( ( A e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
10 |
9
|
anabss5 |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. A ) = ( A x. 1 ) <-> A = 1 ) ) |
11 |
6 10
|
bitrd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A <-> A = 1 ) ) |
12 |
11
|
biimpd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( A ^ 2 ) = A -> A = 1 ) ) |
13 |
12
|
impancom |
|- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( A =/= 0 -> A = 1 ) ) |
14 |
1 13
|
syl5bir |
|- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( -. A = 0 -> A = 1 ) ) |
15 |
14
|
orrd |
|- ( ( A e. CC /\ ( A ^ 2 ) = A ) -> ( A = 0 \/ A = 1 ) ) |
16 |
15
|
ex |
|- ( A e. CC -> ( ( A ^ 2 ) = A -> ( A = 0 \/ A = 1 ) ) ) |
17 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
18 |
|
oveq1 |
|- ( A = 0 -> ( A ^ 2 ) = ( 0 ^ 2 ) ) |
19 |
|
id |
|- ( A = 0 -> A = 0 ) |
20 |
17 18 19
|
3eqtr4a |
|- ( A = 0 -> ( A ^ 2 ) = A ) |
21 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
22 |
|
oveq1 |
|- ( A = 1 -> ( A ^ 2 ) = ( 1 ^ 2 ) ) |
23 |
|
id |
|- ( A = 1 -> A = 1 ) |
24 |
21 22 23
|
3eqtr4a |
|- ( A = 1 -> ( A ^ 2 ) = A ) |
25 |
20 24
|
jaoi |
|- ( ( A = 0 \/ A = 1 ) -> ( A ^ 2 ) = A ) |
26 |
16 25
|
impbid1 |
|- ( A e. CC -> ( ( A ^ 2 ) = A <-> ( A = 0 \/ A = 1 ) ) ) |