Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
2 |
1
|
recnd |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
3 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
4 |
2 3
|
syl |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A ^ 2 ) = ( A x. A ) ) |
5 |
|
simpl |
|- ( ( B e. RR /\ 0 <_ B ) -> B e. RR ) |
6 |
5
|
recnd |
|- ( ( B e. RR /\ 0 <_ B ) -> B e. CC ) |
7 |
|
sqval |
|- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
8 |
6 7
|
syl |
|- ( ( B e. RR /\ 0 <_ B ) -> ( B ^ 2 ) = ( B x. B ) ) |
9 |
4 8
|
eqeqan12d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A x. A ) = ( B x. B ) ) ) |
10 |
|
msq11 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) ) |
11 |
9 10
|
bitrd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |