Metamath Proof Explorer


Theorem sq11d

Description: The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1
|- ( ph -> A e. RR )
lt2sqd.2
|- ( ph -> B e. RR )
lt2sqd.3
|- ( ph -> 0 <_ A )
lt2sqd.4
|- ( ph -> 0 <_ B )
sq11d.5
|- ( ph -> ( A ^ 2 ) = ( B ^ 2 ) )
Assertion sq11d
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 resqcld.1
 |-  ( ph -> A e. RR )
2 lt2sqd.2
 |-  ( ph -> B e. RR )
3 lt2sqd.3
 |-  ( ph -> 0 <_ A )
4 lt2sqd.4
 |-  ( ph -> 0 <_ B )
5 sq11d.5
 |-  ( ph -> ( A ^ 2 ) = ( B ^ 2 ) )
6 sq11
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) )
7 1 3 2 4 6 syl22anc
 |-  ( ph -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) )
8 5 7 mpbid
 |-  ( ph -> A = B )