Description: The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqgt0d.1 | |- ( ph -> A e. RR ) | |
| lt2sqd.2 | |- ( ph -> B e. RR ) | ||
| lt2sqd.3 | |- ( ph -> 0 <_ A ) | ||
| lt2sqd.4 | |- ( ph -> 0 <_ B ) | ||
| sq11d.5 | |- ( ph -> ( A ^ 2 ) = ( B ^ 2 ) ) | ||
| Assertion | sq11d | |- ( ph -> A = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sqgt0d.1 | |- ( ph -> A e. RR ) | |
| 2 | lt2sqd.2 | |- ( ph -> B e. RR ) | |
| 3 | lt2sqd.3 | |- ( ph -> 0 <_ A ) | |
| 4 | lt2sqd.4 | |- ( ph -> 0 <_ B ) | |
| 5 | sq11d.5 | |- ( ph -> ( A ^ 2 ) = ( B ^ 2 ) ) | |
| 6 | sq11 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) | |
| 7 | 1 3 2 4 6 | syl22anc | |- ( ph -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) | 
| 8 | 5 7 | mpbid | |- ( ph -> A = B ) |