Metamath Proof Explorer


Theorem sq11i

Description: The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999)

Ref Expression
Hypotheses resqcl.1
|- A e. RR
lt2sq.2
|- B e. RR
Assertion sq11i
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) )

Proof

Step Hyp Ref Expression
1 resqcl.1
 |-  A e. RR
2 lt2sq.2
 |-  B e. RR
3 1 recni
 |-  A e. CC
4 3 sqvali
 |-  ( A ^ 2 ) = ( A x. A )
5 2 recni
 |-  B e. CC
6 5 sqvali
 |-  ( B ^ 2 ) = ( B x. B )
7 4 6 eqeq12i
 |-  ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A x. A ) = ( B x. B ) )
8 1 2 msq11i
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) )
9 7 8 syl5bb
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) )