Description: The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqcl.1 | |- A e. RR |
|
lt2sq.2 | |- B e. RR |
||
Assertion | sq11i | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcl.1 | |- A e. RR |
|
2 | lt2sq.2 | |- B e. RR |
|
3 | 1 | recni | |- A e. CC |
4 | 3 | sqvali | |- ( A ^ 2 ) = ( A x. A ) |
5 | 2 | recni | |- B e. CC |
6 | 5 | sqvali | |- ( B ^ 2 ) = ( B x. B ) |
7 | 4 6 | eqeq12i | |- ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A x. A ) = ( B x. B ) ) |
8 | 1 2 | msq11i | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) ) |
9 | 7 8 | syl5bb | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |