Description: The square function is one-to-one for nonnegative reals. (Contributed by NM, 27-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqcl.1 | |- A e. RR | |
| lt2sq.2 | |- B e. RR | ||
| Assertion | sq11i | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resqcl.1 | |- A e. RR | |
| 2 | lt2sq.2 | |- B e. RR | |
| 3 | 1 | recni | |- A e. CC | 
| 4 | 3 | sqvali | |- ( A ^ 2 ) = ( A x. A ) | 
| 5 | 2 | recni | |- B e. CC | 
| 6 | 5 | sqvali | |- ( B ^ 2 ) = ( B x. B ) | 
| 7 | 4 6 | eqeq12i | |- ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A x. A ) = ( B x. B ) ) | 
| 8 | 1 2 | msq11i | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A x. A ) = ( B x. B ) <-> A = B ) ) | 
| 9 | 7 8 | bitrid | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> A = B ) ) |