| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 2 | 1 | eqcomi |  |-  4 = ( 2 x. 2 ) | 
						
							| 3 | 2 | oveq1i |  |-  ( 4 ^ 2 ) = ( ( 2 x. 2 ) ^ 2 ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 | 4 4 | sqmuli |  |-  ( ( 2 x. 2 ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) | 
						
							| 6 | 4 | sqvali |  |-  ( 2 ^ 2 ) = ( 2 x. 2 ) | 
						
							| 7 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 8 | 6 7 | oveq12i |  |-  ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) = ( ( 2 x. 2 ) x. 4 ) | 
						
							| 9 |  | 4cn |  |-  4 e. CC | 
						
							| 10 | 4 4 9 | mulassi |  |-  ( ( 2 x. 2 ) x. 4 ) = ( 2 x. ( 2 x. 4 ) ) | 
						
							| 11 |  | 4t2e8 |  |-  ( 4 x. 2 ) = 8 | 
						
							| 12 | 9 4 11 | mulcomli |  |-  ( 2 x. 4 ) = 8 | 
						
							| 13 | 12 | oveq2i |  |-  ( 2 x. ( 2 x. 4 ) ) = ( 2 x. 8 ) | 
						
							| 14 | 8 10 13 | 3eqtri |  |-  ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) = ( 2 x. 8 ) | 
						
							| 15 | 3 5 14 | 3eqtri |  |-  ( 4 ^ 2 ) = ( 2 x. 8 ) |