Metamath Proof Explorer


Theorem sq4e2t8

Description: The square of 4 is 2 times 8. (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion sq4e2t8
|- ( 4 ^ 2 ) = ( 2 x. 8 )

Proof

Step Hyp Ref Expression
1 2t2e4
 |-  ( 2 x. 2 ) = 4
2 1 eqcomi
 |-  4 = ( 2 x. 2 )
3 2 oveq1i
 |-  ( 4 ^ 2 ) = ( ( 2 x. 2 ) ^ 2 )
4 2cn
 |-  2 e. CC
5 4 4 sqmuli
 |-  ( ( 2 x. 2 ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) )
6 4 sqvali
 |-  ( 2 ^ 2 ) = ( 2 x. 2 )
7 sq2
 |-  ( 2 ^ 2 ) = 4
8 6 7 oveq12i
 |-  ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) = ( ( 2 x. 2 ) x. 4 )
9 4cn
 |-  4 e. CC
10 4 4 9 mulassi
 |-  ( ( 2 x. 2 ) x. 4 ) = ( 2 x. ( 2 x. 4 ) )
11 4t2e8
 |-  ( 4 x. 2 ) = 8
12 9 4 11 mulcomli
 |-  ( 2 x. 4 ) = 8
13 12 oveq2i
 |-  ( 2 x. ( 2 x. 4 ) ) = ( 2 x. 8 )
14 8 10 13 3eqtri
 |-  ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) = ( 2 x. 8 )
15 3 5 14 3eqtri
 |-  ( 4 ^ 2 ) = ( 2 x. 8 )