Step |
Hyp |
Ref |
Expression |
1 |
|
resqcl |
|- ( A e. RR -> ( A ^ 2 ) e. RR ) |
2 |
|
sqge0 |
|- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
3 |
|
absid |
|- ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) -> ( abs ` ( A ^ 2 ) ) = ( A ^ 2 ) ) |
4 |
1 2 3
|
syl2anc |
|- ( A e. RR -> ( abs ` ( A ^ 2 ) ) = ( A ^ 2 ) ) |
5 |
|
recn |
|- ( A e. RR -> A e. CC ) |
6 |
|
2nn0 |
|- 2 e. NN0 |
7 |
|
absexp |
|- ( ( A e. CC /\ 2 e. NN0 ) -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
8 |
5 6 7
|
sylancl |
|- ( A e. RR -> ( abs ` ( A ^ 2 ) ) = ( ( abs ` A ) ^ 2 ) ) |
9 |
4 8
|
eqtr3d |
|- ( A e. RR -> ( A ^ 2 ) = ( ( abs ` A ) ^ 2 ) ) |
10 |
|
resqcl |
|- ( B e. RR -> ( B ^ 2 ) e. RR ) |
11 |
|
sqge0 |
|- ( B e. RR -> 0 <_ ( B ^ 2 ) ) |
12 |
|
absid |
|- ( ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) -> ( abs ` ( B ^ 2 ) ) = ( B ^ 2 ) ) |
13 |
10 11 12
|
syl2anc |
|- ( B e. RR -> ( abs ` ( B ^ 2 ) ) = ( B ^ 2 ) ) |
14 |
|
recn |
|- ( B e. RR -> B e. CC ) |
15 |
|
absexp |
|- ( ( B e. CC /\ 2 e. NN0 ) -> ( abs ` ( B ^ 2 ) ) = ( ( abs ` B ) ^ 2 ) ) |
16 |
14 6 15
|
sylancl |
|- ( B e. RR -> ( abs ` ( B ^ 2 ) ) = ( ( abs ` B ) ^ 2 ) ) |
17 |
13 16
|
eqtr3d |
|- ( B e. RR -> ( B ^ 2 ) = ( ( abs ` B ) ^ 2 ) ) |
18 |
9 17
|
eqeqan12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) ) ) |
19 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
20 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
21 |
19 20
|
jca |
|- ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
22 |
|
abscl |
|- ( B e. CC -> ( abs ` B ) e. RR ) |
23 |
|
absge0 |
|- ( B e. CC -> 0 <_ ( abs ` B ) ) |
24 |
22 23
|
jca |
|- ( B e. CC -> ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) ) |
25 |
|
sq11 |
|- ( ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) /\ ( ( abs ` B ) e. RR /\ 0 <_ ( abs ` B ) ) ) -> ( ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |
26 |
21 24 25
|
syl2an |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |
27 |
5 14 26
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( abs ` A ) ^ 2 ) = ( ( abs ` B ) ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |
28 |
18 27
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( abs ` A ) = ( abs ` B ) ) ) |