Metamath Proof Explorer


Theorem sqabsaddi

Description: Square of absolute value of sum. Proposition 10-3.7(g) of Gleason p. 133. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypotheses absvalsqi.1
|- A e. CC
abssub.2
|- B e. CC
Assertion sqabsaddi
|- ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 abssub.2
 |-  B e. CC
3 sqabsadd
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) )
4 1 2 3 mp2an
 |-  ( ( abs ` ( A + B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) + ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) )