| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cjsub |  |-  ( ( A e. CC /\ B e. CC ) -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) x. ( * ` ( A - B ) ) ) = ( ( A - B ) x. ( ( * ` A ) - ( * ` B ) ) ) ) | 
						
							| 3 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 4 |  | cjcl |  |-  ( B e. CC -> ( * ` B ) e. CC ) | 
						
							| 5 | 3 4 | anim12i |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) e. CC /\ ( * ` B ) e. CC ) ) | 
						
							| 6 |  | mulsub |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( ( * ` A ) e. CC /\ ( * ` B ) e. CC ) ) -> ( ( A - B ) x. ( ( * ` A ) - ( * ` B ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) - ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) | 
						
							| 7 | 5 6 | mpdan |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) x. ( ( * ` A ) - ( * ` B ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) - ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) | 
						
							| 8 | 2 7 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) x. ( * ` ( A - B ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) - ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) | 
						
							| 9 |  | subcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) | 
						
							| 10 |  | absvalsq |  |-  ( ( A - B ) e. CC -> ( ( abs ` ( A - B ) ) ^ 2 ) = ( ( A - B ) x. ( * ` ( A - B ) ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - B ) ) ^ 2 ) = ( ( A - B ) x. ( * ` ( A - B ) ) ) ) | 
						
							| 12 |  | absvalsq |  |-  ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) | 
						
							| 13 |  | absvalsq |  |-  ( B e. CC -> ( ( abs ` B ) ^ 2 ) = ( B x. ( * ` B ) ) ) | 
						
							| 14 |  | mulcom |  |-  ( ( B e. CC /\ ( * ` B ) e. CC ) -> ( B x. ( * ` B ) ) = ( ( * ` B ) x. B ) ) | 
						
							| 15 | 4 14 | mpdan |  |-  ( B e. CC -> ( B x. ( * ` B ) ) = ( ( * ` B ) x. B ) ) | 
						
							| 16 | 13 15 | eqtrd |  |-  ( B e. CC -> ( ( abs ` B ) ^ 2 ) = ( ( * ` B ) x. B ) ) | 
						
							| 17 | 12 16 | oveqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) = ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) ) | 
						
							| 18 |  | mulcl |  |-  ( ( A e. CC /\ ( * ` B ) e. CC ) -> ( A x. ( * ` B ) ) e. CC ) | 
						
							| 19 | 4 18 | sylan2 |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. ( * ` B ) ) e. CC ) | 
						
							| 20 | 19 | addcjd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( * ` B ) ) + ( * ` ( A x. ( * ` B ) ) ) ) = ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) | 
						
							| 21 |  | cjmul |  |-  ( ( A e. CC /\ ( * ` B ) e. CC ) -> ( * ` ( A x. ( * ` B ) ) ) = ( ( * ` A ) x. ( * ` ( * ` B ) ) ) ) | 
						
							| 22 | 4 21 | sylan2 |  |-  ( ( A e. CC /\ B e. CC ) -> ( * ` ( A x. ( * ` B ) ) ) = ( ( * ` A ) x. ( * ` ( * ` B ) ) ) ) | 
						
							| 23 |  | cjcj |  |-  ( B e. CC -> ( * ` ( * ` B ) ) = B ) | 
						
							| 24 | 23 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( * ` ( * ` B ) ) = B ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) x. ( * ` ( * ` B ) ) ) = ( ( * ` A ) x. B ) ) | 
						
							| 26 | 22 25 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( * ` ( A x. ( * ` B ) ) ) = ( ( * ` A ) x. B ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( * ` B ) ) + ( * ` ( A x. ( * ` B ) ) ) ) = ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) | 
						
							| 28 | 20 27 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) = ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) | 
						
							| 29 | 17 28 | oveq12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) - ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) = ( ( ( A x. ( * ` A ) ) + ( ( * ` B ) x. B ) ) - ( ( A x. ( * ` B ) ) + ( ( * ` A ) x. B ) ) ) ) | 
						
							| 30 | 8 11 29 | 3eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` ( A - B ) ) ^ 2 ) = ( ( ( ( abs ` A ) ^ 2 ) + ( ( abs ` B ) ^ 2 ) ) - ( 2 x. ( Re ` ( A x. ( * ` B ) ) ) ) ) ) |