Metamath Proof Explorer


Theorem sqcl

Description: Closure of square. (Contributed by NM, 10-Aug-1999)

Ref Expression
Assertion sqcl
|- ( A e. CC -> ( A ^ 2 ) e. CC )

Proof

Step Hyp Ref Expression
1 sqval
 |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )
2 mulcl
 |-  ( ( A e. CC /\ A e. CC ) -> ( A x. A ) e. CC )
3 2 anidms
 |-  ( A e. CC -> ( A x. A ) e. CC )
4 1 3 eqeltrd
 |-  ( A e. CC -> ( A ^ 2 ) e. CC )