Metamath Proof Explorer


Theorem sqcld

Description: Closure of square. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis expcld.1
|- ( ph -> A e. CC )
Assertion sqcld
|- ( ph -> ( A ^ 2 ) e. CC )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 sqcl
 |-  ( A e. CC -> ( A ^ 2 ) e. CC )
3 1 2 syl
 |-  ( ph -> ( A ^ 2 ) e. CC )