Metamath Proof Explorer


Theorem sqcli

Description: Closure of square. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis sqval.1
|- A e. CC
Assertion sqcli
|- ( A ^ 2 ) e. CC

Proof

Step Hyp Ref Expression
1 sqval.1
 |-  A e. CC
2 sqcl
 |-  ( A e. CC -> ( A ^ 2 ) e. CC )
3 1 2 ax-mp
 |-  ( A ^ 2 ) e. CC