Metamath Proof Explorer


Theorem sqcn

Description: The square function on complex numbers is continuous. (Contributed by NM, 13-Jun-2007) (Proof shortened by Mario Carneiro, 5-May-2014)

Ref Expression
Hypothesis sqcn.j
|- J = ( TopOpen ` CCfld )
Assertion sqcn
|- ( x e. CC |-> ( x ^ 2 ) ) e. ( J Cn J )

Proof

Step Hyp Ref Expression
1 sqcn.j
 |-  J = ( TopOpen ` CCfld )
2 2nn0
 |-  2 e. NN0
3 1 expcn
 |-  ( 2 e. NN0 -> ( x e. CC |-> ( x ^ 2 ) ) e. ( J Cn J ) )
4 2 3 ax-mp
 |-  ( x e. CC |-> ( x ^ 2 ) ) e. ( J Cn J )