Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
2 |
|
3simpc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
3 |
|
divmuldiv |
|- ( ( ( A e. CC /\ A e. CC ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( A / B ) x. ( A / B ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
4 |
1 1 2 2 3
|
syl22anc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. ( A / B ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
5 |
|
divcl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
6 |
|
sqval |
|- ( ( A / B ) e. CC -> ( ( A / B ) ^ 2 ) = ( ( A / B ) x. ( A / B ) ) ) |
7 |
5 6
|
syl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) ^ 2 ) = ( ( A / B ) x. ( A / B ) ) ) |
8 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
9 |
|
sqval |
|- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
10 |
8 9
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
11 |
10
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A x. A ) / ( B x. B ) ) ) |
12 |
4 7 11
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) |