Metamath Proof Explorer


Theorem sqdivd

Description: Distribution of square over division. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
mulexpd.2
|- ( ph -> B e. CC )
sqdivd.3
|- ( ph -> B =/= 0 )
Assertion sqdivd
|- ( ph -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 mulexpd.2
 |-  ( ph -> B e. CC )
3 sqdivd.3
 |-  ( ph -> B =/= 0 )
4 sqdiv
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) )