Metamath Proof Explorer


Theorem sqdivi

Description: Distribution of square over division. (Contributed by NM, 20-Aug-2001)

Ref Expression
Hypotheses sqval.1
|- A e. CC
sqmul.2
|- B e. CC
sqdiv.3
|- B =/= 0
Assertion sqdivi
|- ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) )

Proof

Step Hyp Ref Expression
1 sqval.1
 |-  A e. CC
2 sqmul.2
 |-  B e. CC
3 sqdiv.3
 |-  B =/= 0
4 1 2 1 2 3 3 divmuldivi
 |-  ( ( A / B ) x. ( A / B ) ) = ( ( A x. A ) / ( B x. B ) )
5 1 2 3 divcli
 |-  ( A / B ) e. CC
6 5 sqvali
 |-  ( ( A / B ) ^ 2 ) = ( ( A / B ) x. ( A / B ) )
7 1 sqvali
 |-  ( A ^ 2 ) = ( A x. A )
8 2 sqvali
 |-  ( B ^ 2 ) = ( B x. B )
9 7 8 oveq12i
 |-  ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A x. A ) / ( B x. B ) )
10 4 6 9 3eqtr4i
 |-  ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) )